Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 14(1): 1202, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882415

RESUMEN

Seed thermoinhibition, the repression of germination under high temperatures, prevents seedling establishment under potentially fatal conditions. Thermoinhibition is relevant for phenology and agriculture, particularly in a warming globe. The temperature sensing mechanisms and signaling pathways sustaining thermoinhibition are unknown. Here we show that thermoinhibition in Arabidopsis thaliana is not autonomously controlled by the embryo but is rather implemented by the endosperm. High temperature is sensed through endospermic phyB by accelerating its reversion from the active signaling Pfr form into the inactive Pr form, as previously described in seedlings. This leads to thermoinhibition mediated by PIFs, mainly PIF1, PIF3 and PIF5. Endospermic PIF3 represses the expression of the endospermic ABA catabolic gene CYP707A1 and promotes endospermic ABA accumulation and release towards the embryo to block its growth. Furthermore, endospermic ABA represses embryonic PIF3 accumulation that would otherwise promote embryonic growth. Hence, under high temperatures PIF3 exerts opposite growth responses in the endosperm and embryo.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Fitocromo B , Agricultura , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endospermo/genética , Fitocromo B/genética , Plantones , Semillas/genética , Temperatura , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
3.
Dev Cell ; 56(22): 3066-3081.e5, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34706263

RESUMEN

In Arabidopsis mature seeds, the onset of the embryo-to-seedling transition is nonautonomously controlled, being blocked by endospermic abscisic acid (ABA) release under unfavorable conditions. Whether the mature endosperm governs additional nonautonomous developmental processes during this transition is unknown. Mature embryos have a more permeable cuticle than seedlings, consistent with their endospermic ABA uptake capability. Seedlings acquire their well-sealing cuticles adapted to aerial lifestyle during germination. Endosperm removal prevents seedling cuticle formation, and seed reconstitution by endosperm grafting onto embryos shows that the endosperm promotes seedling cuticle development. Grafting different endosperm and embryo mutant combinations, together with biochemical, microscopy, and mass spectrometry approaches, reveal that the release of tyrosylprotein sulfotransferase (TPST)-sulfated CIF2 and PSY1 peptides from the endosperm promotes seedling cuticle development. Endosperm-deprived embryos produced nonviable seedlings bearing numerous developmental defects, not related to embryo malnutrition, all restored by exogenously provided endosperm. Hence, seedling establishment is nonautonomous, requiring the mature endosperm.


Asunto(s)
Arabidopsis/metabolismo , Endospermo/metabolismo , Péptidos/metabolismo , Plantones/metabolismo , Sulfatos/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Germinación , Plantas , Semillas/metabolismo
4.
Plant Physiol ; 182(4): 2166-2181, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32060052

RESUMEN

Photosynthesis is the fundamental process fueling plant vegetative growth and development. The progeny of plants relies on maternal photosynthesis, via food reserves in the seed, to supply the necessary energy for seed germination and early seedling establishment. Intriguingly, before seed maturation, Arabidopsis (Arabidopsis thaliana) embryos are also photosynthetically active, the biological significance of which remains poorly understood. Investigating this system is genetically challenging because mutations perturbing photosynthesis are expected to affect both embryonic and vegetative tissues. Here, we isolated a temperature-sensitive mutation affecting CPN60α2, which encodes a subunit of the chloroplast chaperonin complex CPN60. When exposed to cold temperatures, cpn60α2 mutants accumulate less chlorophyll in newly produced tissues, thus allowing the specific disturbance of embryonic photosynthesis. Analyses of cpn60α2 mutants were combined with independent genetic and pharmacological approaches to show that embryonic photosynthetic activity is necessary for normal skoto- and photomorphogenesis in juvenile seedlings as well as long-term adult plant development. Our results reveal the importance of embryonic photosynthetic activity for normal adult plant growth, development, and health.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Semillas/metabolismo , Semillas/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Germinación/genética , Germinación/fisiología , Mutación , Fotosíntesis/genética , Fotosíntesis/fisiología , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Plantones/genética , Plantones/metabolismo , Plantones/fisiología , Semillas/genética
5.
PLoS Genet ; 15(7): e1008292, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31339933

RESUMEN

Red light promotes germination after activating phytochrome phyB, which destabilizes the germination repressor PIF1. Early upon seed imbibition, canopy light, unfavorable for photosynthesis, represses germination by stabilizing PIF1 after inactivating phyB. Paradoxically, later upon imbibition, canopy light stimulates germination after activating phytochrome phyA. phyA-mediated germination is poorly understood and, intriguingly, is inefficient, compared to phyB-mediated germination, raising the question of its physiological significance. A genetic screen identified polyamine uptake transporter 2 (put2) mutants that overaccumulate polyamines, a class of antioxidant polycations implicated in numerous cellular functions, which we found promote phyA-mediated germination. In WT seeds, our data suggest that canopy light represses polyamines accumulation through PIF1 while red light promotes polyamines accumulation. We show that canopy light also downregulates PIF1 levels, through phyA; however, PIF1 reaccumulates rapidly, which limits phyA-mediated germination. High polyamines levels in decaying seeds bypass PIF1 repression of germination and stimulate phyA-mediated germination, suggesting an adaptive mechanism promoting survival when viability is compromised.


Asunto(s)
1-Pirrolina-5-Carboxilato Deshidrogenasa/genética , Sistemas de Transporte de Aminoácidos/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fitocromo A/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , 1-Pirrolina-5-Carboxilato Deshidrogenasa/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación hacia Abajo , Germinación , Luz , Mutación , Poliaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Elife ; 82019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30910007

RESUMEN

Seed dormancy is an adaptive trait preventing premature germination out of season. In a previous report (Piskurewicz et al., 2016) we showed that dormancy levels are maternally inherited through the preferential maternal allele expression in the seed endosperm of ALLANTOINASE (ALN), a negative regulator of dormancy. Here we show that suppression of ALN paternal allele expression is imposed by non-canonical RNA-directed DNA methylation (RdDM) of the paternal ALN allele promoter. Dormancy levels are further enhanced by cold during seed development. We show that DNA methylation of the ALN promoter is stimulated by cold in a tissue-specific manner through non-canonical RdDM, involving RDR6 and AGO6. This leads to suppression of ALN expression and further promotion of seed dormancy. Our results suggest that tissue-specific and cold-induced RdDM is superimposed to parental allele imprints to deposit in the seed progeny a transient memory of environmental conditions experienced by the mother plant.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas , ARN/metabolismo , Amidohidrolasas/biosíntesis , Arabidopsis/genética , Frío , Regiones Promotoras Genéticas
7.
Elife ; 52016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28005006

RESUMEN

Mature seed dormancy is a vital plant trait that prevents germination out of season. In Arabidopsis, the trait can be maternally regulated but the underlying mechanisms sustaining this regulation, its general occurrence and its biological significance among accessions are poorly understood. Upon seed imbibition, the endosperm is essential to repress the germination of dormant seeds. Investigation of genomic imprinting in the mature seed endosperm led us to identify a novel set of imprinted genes that are expressed upon seed imbibition. Remarkably, programs of imprinted gene expression are adapted according to the dormancy status of the seed. We provide direct evidence that imprinted genes play a role in regulating germination processes and that preferential maternal allelic expression can implement maternal inheritance of seed dormancy levels.


Asunto(s)
Arabidopsis/fisiología , Impresión Genómica , Herencia Materna , Latencia en las Plantas
8.
Proc Natl Acad Sci U S A ; 113(26): E3792-800, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27303039

RESUMEN

Formation of singlet oxygen ((1)O2) has been implicated with damaging photosystem II (PSII) that needs to undergo continuous repair to maintain photosynthetic electron transport. In addition to its damaging effect, (1)O2 has also been shown to act as a signal that triggers stress acclimation and an enhanced stress resistance. A signaling role of (1)O2 was first documented in the fluorescent (flu) mutant of Arabidopsis It strictly depends on the chloroplast protein EXECUTER1 (EX1) and happens under nonphotoinhibitory light conditions. Under severe light stress, signaling is initiated independently of EX1 by (1)O2 that is thought to be generated at the acceptor side of active PSII within the core of grana stacks. The results of the present study suggest a second source of (1)O2 formation in grana margins close to the site of chlorophyll synthesis where EX1 is localized and the disassembly of damaged and reassembly of active PSII take place. The initiation of (1)O2 signaling in grana margins depends on EX1 and the ATP-dependent zinc metalloprotease FtsH. As FtsH cleaves also the D1 protein during the disassembly of damaged PSII, EX1- and (1)O2-mediated signaling seems to be not only spatially but also functionally associated with the repair of PSII.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de la Membrana/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Oxígeno Singlete/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Plantones/metabolismo , Transducción de Señal
9.
Methods Mol Biol ; 1398: 183-96, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26867624

RESUMEN

The model organism Arabidopsis thaliana has been extensively used to unmask the molecular genetic signaling pathways controlling seed germination in plants. In Arabidopsis, the normal seed to seedling developmental transition involves testa rupture soon followed by endosperm rupture, radicle elongation, root hair formation, cotyledon expansion, and greening. Here we detail a number of basic procedures to assess Arabidopsis seed germination in response to different light (red and far-red pulses), temperature (seed thermoinhibition), and water potential (osmotic stress) environmental conditions. We also discuss the role of the endosperm and how its germination-repressive activity can be monitored genetically by means of a seed coat bedding assay. Finally we detail how to evaluate germination responses to changes in gibberellin (GA) and abscisic acid (ABA) levels by manipulating pharmacologically the germination medium.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Endospermo/efectos de los fármacos , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Giberelinas/farmacología , Semillas/efectos de los fármacos , Semillas/metabolismo
10.
PLoS Genet ; 11(12): e1005708, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26681322

RESUMEN

Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.


Asunto(s)
Germinación/genética , Giberelinas/genética , Lípidos de la Membrana/genética , Latencia en las Plantas/genética , Arabidopsis , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo
11.
RNA ; 20(12): 1987-99, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25344399

RESUMEN

The experimental induction of RNA silencing in plants often involves expression of transgenes encoding inverted repeat (IR) sequences to produce abundant dsRNAs that are processed into small RNAs (sRNAs). These sRNAs are key mediators of post-transcriptional gene silencing (PTGS) and determine its specificity. Despite its application in agriculture and broad utility in plant research, the mechanism of IR-PTGS is incompletely understood. We generated four sets of 60 Arabidopsis plants, each containing IR transgenes expressing different configurations of uidA and CHALCONE Synthase (At-CHS) gene fragments. Levels of PTGS were found to depend on the orientation and position of the fragment in the IR construct. Deep sequencing and mapping of sRNAs to corresponding transgene-derived and endogenous transcripts identified distinctive patterns of differential sRNA accumulation that revealed similarities among sRNAs associated with IR-PTGS and endogenous sRNAs linked to uncapped mRNA decay. Detailed analyses of poly-A cleavage products from At-CHS mRNA confirmed this hypothesis. We also found unexpected associations between sRNA accumulation and the presence of predicted open reading frames in the trigger sequence. In addition, strong IR-PTGS affected the prevalence of endogenous sRNAs, which has implications for the use of PTGS for experimental or applied purposes.


Asunto(s)
Silenciador del Gen , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Aciltransferasas/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Secuencias Invertidas Repetidas/genética , Plantas Modificadas Genéticamente/genética , Estabilidad del ARN/genética , ARN Bicatenario/genética , Transducción de Señal
12.
Genes Dev ; 26(17): 1984-96, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22948663

RESUMEN

Phytochromes phyB and phyA mediate a remarkable developmental switch whereby, early upon seed imbibition, canopy light prevents phyB-dependent germination, whereas later on, it stimulates phyA-dependent germination. Using a seed coat bedding assay where the growth of dissected embryos is monitored under the influence of dissected endosperm, allowing combinatorial use of mutant embryos and endosperm, we show that canopy light specifically inactivates phyB activity in the endosperm to override phyA-dependent signaling in the embryo. This interference involves abscisic acid (ABA) release from the endosperm and distinct spatial activities of phytochrome signaling components. Under the canopy, endospermic ABA opposes phyA signaling through the transcription factor (TF) ABI5, which shares with the TF PIF1 several target genes that negatively regulate germination in the embryo. ABI5 enhances the expression of phytochrome signaling genes PIF1, SOMNUS, GAI, and RGA, but also of ABA and gibberellic acid (GA) metabolic genes. Over time, weaker ABA-dependent responses eventually enable phyA-dependent germination, a distinct type of germination driven solely by embryonic growth.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/metabolismo , Germinación , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Semillas/embriología , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas , Semillas/metabolismo , Transducción de Señal
13.
Methods Mol Biol ; 773: 151-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21898255

RESUMEN

Here, we describe a series of methods suitable for the reproducible and abundant isolation of total RNA, genomic DNA, and total protein from dry or imbibed Arabidopsis seeds. The resulting material is suitable for most standard molecular biology procedures.


Asunto(s)
Arabidopsis/genética , ADN de Plantas/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , ARN de Planta/aislamiento & purificación , ADN de Plantas/genética , Proteínas de Plantas/genética , ARN de Planta/genética , Semillas/química , Semillas/genética
14.
Proc Natl Acad Sci U S A ; 107(44): 19108-13, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20956298

RESUMEN

Seed dormancy is an ecologically important adaptive trait in plants whereby germination is repressed even under favorable germination conditions such as imbibition with water. In Arabidopsis and most plant species, dormancy absolutely requires an unidentified seed coat germination-repressive activity and constitutively higher abscisic acid (ABA) levels upon seed imbibition. The mechanisms underlying these processes and their possible relationship are incompletely understood. We developed a "seed coat bedding" assay monitoring the growth of dissected embryos cultured on a layer of seed coats, allowing combinatorial experiments using dormant, nondormant, and various genetically modified seed coat and embryonic materials. This assay, combined with direct ABA measurements, revealed that, upon imbibition, dormant coats, unlike nondormant coats, actively produce and release ABA to repress embryo germination, whatever the embryo origin, i.e., from dormant, nondormant, or never dormant aba seeds, unable to synthesize ABA. The persistent high ABA levels in imbibed dormant seeds requires the permanent expression of the DELLA gene RGL2, where it remains insensitive to gibberellins (GA) unlike in nondormant seeds. These findings present the seed coat as an organ actively controlling germination upon seed imbibition and provide a framework to investigate how environmental factors break seed dormancy.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endospermo/metabolismo , Latencia en las Plantas/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endospermo/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Giberelinas/genética , Giberelinas/metabolismo , Factores de Transcripción/genética
15.
Plant Signal Behav ; 4(1): 63-5, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19704711

RESUMEN

We recently reported that the DELLA factor RGL2 represses testa rupture in response to changes in ABA and GA levels. Here, we provide genetic evidence that this observation extends to RGL3, another DELLA factor whose function was not previously characterized. However, RGL3's repressive activity was seen only in an rgl2 genetic background. This may be explained by the observation that RGL3's mRNA levels are positively regulated by ABA and low GA but to a lesser extent than those of RGL2. This could ensure that RGL2's repressive activity dominates relative to that of RGL3 under most germination conditions.

16.
Plant Physiol ; 150(4): 1733-49, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19571308

RESUMEN

Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell.


Asunto(s)
Proteínas Bacterianas/metabolismo , Productos Agrícolas/microbiología , Interacciones Huésped-Patógeno , Pseudomonas/fisiología , Ralstonia/fisiología , Proteínas Bacterianas/genética , Productos Agrícolas/clasificación , Productos Agrícolas/genética , Genes de Plantas , Lactuca/genética , Lactuca/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Necrosis , Fenotipo , Polimorfismo Genético , Pseudomonas/patogenicidad , Ralstonia/patogenicidad , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Virulencia
17.
EMBO J ; 28(15): 2259-71, 2009 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-19556968

RESUMEN

Under the canopy, far-red (FR) light represses seed germination by inactivating phytochrome photoreceptors. This elicits a decrease in gibberellins (GA) levels and an increase in abscisic acid (ABA) levels. GA promotes germination by enhancing the proteasome-mediated destruction of DELLA repressors. ABA prevents germination by stimulating the expression of ABI repressors. How phytochromes elicit changes in hormone levels or how GA- and ABA-dependent signals are coordinated to repress germination remains poorly understood. We show that repression of germination by FR light involves stabilized DELLA factors GAI, RGA and RGL2 that stimulate endogenous ABA synthesis. In turn, ABA blocks germination through the transcription factor ABI3. The role of PIL5, a basic helix-loop-helix transcription factor stimulating GAI and RGA expression, is significant, provided GA synthesis is high enough; otherwise, high GAI and RGA protein levels persist to block germination. Under white light, GAI and RGA driven by the RGL2 promoter can substitute for RGL2 to promote ABA synthesis and repress germination, consistent with the recent findings with RGL2. The three DELLA factors inhibit testa rupture whereas ABI3 blocks endosperm rupture.


Asunto(s)
Ácido Abscísico/biosíntesis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Regulación de la Expresión Génica , Germinación/efectos de la radiación , Luz , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
18.
Plant Cell ; 20(10): 2729-45, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18941053

RESUMEN

Seed germination is antagonistically controlled by the phytohormones gibberellic acid (GA) and abscisic acid (ABA). GA promotes seed germination by enhancing the proteasome-mediated destruction of RGL2 (for RGA-LIKE2), a key DELLA factor repressing germination. By contrast, ABA blocks germination by inducing ABI5 (for ABA-INSENSITIVE5), a basic domain/leucine zipper transcription factor repressing germination. Decreased GA synthesis leads to an increase in endogenous ABA levels through a stabilized RGL2, a process that may involve XERICO, a RING-H2 zinc finger factor promoting ABA synthesis. In turn, increased endogenous ABA synthesis is necessary to elevate not only ABI5 RNA and protein levels but also, critically, those of RGL2. Increased ABI5 protein is ultimately responsible for preventing seed germination when GA levels are reduced. However, overexpression of ABI5 was not sufficient to repress germination, as ABI5 activity requires phosphorylation. The endogenous ABI5 phosphorylation and inhibition of germination could be recapitulated by the addition of a SnRK2 protein kinase to the ABI5 overexpression line. In sleepy1 mutant seeds, RGL2 overaccumulates; germination of these seeds can occur under conditions that produce low ABI5 expression. These data support the notion that ABI5 acts as the final common repressor of germination in response to changes in ABA and GA levels.


Asunto(s)
Ácido Abscísico/biosíntesis , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/embriología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Giberelinas/metabolismo , Semillas/crecimiento & desarrollo , Factores de Transcripción/fisiología , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/efectos de los fármacos , Germinación/fisiología , Giberelinas/farmacología , Modelos Biológicos , Fosforilación , Plantas Modificadas Genéticamente/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Semillas/efectos de los fármacos , Semillas/metabolismo , Transducción de Señal/efectos de los fármacos , Triazoles/farmacología
19.
Plant J ; 51(5): 803-18, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17587302

RESUMEN

The RGC2 gene cluster in lettuce (Lactuca sativa) is one of the largest known families of genes encoding nucleotide binding site-leucine-rich repeat (NBS-LRR) proteins. One of its members, RGC2B, encodes Dm3 which determines resistance to downy mildew caused by the oomycete Bremia lactucae carrying the cognate avirulence gene, Avr3. We developed an efficient strategy for analysis of this large family of low expressed genes using post-transcriptional gene silencing (PTGS). We transformed lettuce cv. Diana (carrying Dm3) using chimeric gene constructs designed to simultaneously silence RGC2B and the GUS reporter gene via the production of interfering hairpin RNA (ihpRNA). Transient assays of GUS expression in leaves accurately predicted silencing of both genes and were subsequently used to assay silencing in transgenic T(1) plants and their offspring. Levels of mRNA were reduced not only for RGC2B but also for all seven diverse RGC2 family members tested. We then used the same strategy to show that the resistance specificity encoded by the genetically defined Dm18 locus in lettuce cv. Mariska is the result of two resistance specificities, only one of which was silenced by ihpRNA derived from RGC2B. Analysis of progeny from crosses between transgenic, silenced tester stocks and lettuce accessions carrying other resistance genes previously mapped to the RGC2 locus indicated that two additional resistance specificities to B. lactucae, Dm14 and Dm16, as well as resistance to lettuce root aphid (Pemphigus bursarius L.), Ra, are encoded by RGC2 family members.


Asunto(s)
Genes de Plantas , Inmunidad Innata/genética , Lactuca/fisiología , Familia de Multigenes , Enfermedades de las Plantas/inmunología , Animales , Áfidos/fisiología , Silenciador del Gen , Genes Reporteros , Glucuronidasa/genética , Lactuca/microbiología , Lactuca/parasitología , Oomicetos/fisiología , Plantas Modificadas Genéticamente/genética , ARN Mensajero/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...